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Random Walks on the Bethe Lattice 
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We obtain random walk statistics for a nearest-neighbor (Pdlya) walk on a Bethe 
lattice (infinite Cayley tree) of coordination number z, and show how a random 
walk problem for a particular inhomogeneous Bethe lattice may be solved 
exactly. We question the common assertion that the Bethe lattice is an infinite- 
dimensional system. 
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1. INTRODUCTION 

The Cayley tree (1) is a well-defined topological entity, consisting of sites, 
connected by bonds, with the following properties: 

(i) each site has the same coordination number z (i.e., each site is 
connected to z nearest neighbors); 

(ii) no closed loops exist. 
In the case z = 2, the Cayley tree is a one-dimensional object (a linear 
chain). For z/> 3, a Cayley tree can be embedded in two-dimensional 
Euclidean space, but if the tree is of infinite extent the angles between 
bonds and the lengths of bonds cannot both be bounded below by any 
positive constant. Since an embedding with constant bond lengths and 
angles is not possible in any finite-dimensional Euclidean space, the Cayley 
tree of infinite extent is often described as a "pseudolattice of infinite 
dimension," and is often called the Bethe lattice. (2) 

The Bethe lattice has a uniquely simple topological structure: it is 
simply connected, and all sites are topologically equivalent. This structure 
renders a number of otherwise very difficult problems of statistical physics 
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analytically solvable. A useful short review of these matters has been given 
by Thorpe, (3) though many additional references may be added to his 
collection. (4) Although some work has been done on transport properties of 
Bethe lattices, (5) the present authors have not encountered any investiga- 
tion of the statistical properties of random walks on Bethe lattices. Such an 
investigation is the objective of the present paper; particular emphasis is 
placed on the statistical properties of walks of long duration. 

In Section 2, we extend the Montroll (O generating function formalism 
for random walks on Bravais lattices to the Bethe lattice. Many existing 
calculations of random walk statistics for Bravais lattices (7~ can conse- 
quently be modified for application to the Bethe lattice. In Section 3, we 
derive random walk statistics for a P61ya (8~ (unbiased, nearest-neighbor) 
walk on a Bethe lattice, including the probability of a recurrent walk (one 
for which the walker returns to the starting point), the mean duration of a 
recurrent walk, the probability of reaching any given site and the mean 
first-passage time to this site, and the mean number of distinct sites visited 
in a walk of n steps as n ~ ~o. The basic formalism developed here is not 
easily adapted to inhomogeneous Bethe lattices (for which the transition 
probabilities vary from site to site), but we show in Section 4 how the 
problem of a random walk on a particular inhomogeneous Bethe lattice 
(corresponding to a central force field) can be solved exactly. Finally, in 
Section 5, we compare random walk statistics for the Bethe lattice with 
those for Bravais lattices, and address the question of the subjective 
definition of the dimensionality of a Bethe lattice. 

2. RANDOM WALK GENERATING FUNCTIONS 

We select any given site of the Bethe lattice as origin of coordinates. 
Any other site on the lattice is connected to this origin by a unique path. If 
this path consists of l bonds, we assign to the site the coordinate l. (Hence 
there is a unique site, the origin, with l = 0; there are z sites with / = 1; and 
there are in general z(z - 1) t- 1 sites with the same coordinate 1.) Restrict- 
ing our attention to unbiased, nearest-neighbor (Prlya (s)) stepping, we note 
that a step will either take the walker further from the origin, with 
probability ( z -  1)/z, or closer to the origin, with probability l / z .  The 
walk may therefore be described as a biased, one-dimensional lattice walk, 
and the transition probability from a site with coordinate l ' to a site with 
coordinate l is 

[~ l , l '  + 1 ' 

The origin acts as a reflecting barrier. 

1 l, -4- Z6 / , / , _ l ,  ~> 1 (l) 
/ ' = 0  
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We consider a walk for which the starting point has coordinate m. (It 
is important here to distinguish between the starting point of the walk, 
called by many authors "the origin," and the origin of coordinates. In the 
present paper, the term "origin" is reserved for the origin of coordinates.) 
Let P,,(l[m) denote the probability that the walker has coordinate I after n 
steps, so that the initial condition is 

P0(ll m) = 8,~ (2) 

The evolution of the walk is governed by the equation 

en+ z(/[ m) = ~ Y(l, l ')Pn(l'l m) (3) 
l '  

and the solution for Pn(l[m) can be determined via generating functions by 
treating the origin as a defect in the one-dimensional lattice onto which the 
Bethe lattice has been mapped. Following Montroll's treatment of defective 
Bravais lattices, (7~ we write 

3'(l,l') = e ( l -  l') + q(l,l ')  (4) 

where 

p ( l ) =  1 -  z ~z,] + -z SZ,-i (5) 

and 
0, l ' 4 : 0  

q(l, l') = 18l, Z - lz 8,,_ , ,  l' = 0 (6) 

Here the integers l, l ' are allowed to take negative values. So long as the 
starting coordinate is non-negative, the "defect" at the origin guarantees 
that P,~(llm) = 0 for l < 0. 

It follows from Eqs. (3) and (4) that 

Pn+l(l[m) - ~ p ( l -  l ' )Pn(l ' lm ) = ~ q ( l , l ' ) P , ( l ' J m )  (7) 
1' l '  

and introducing a generating function, defined for 1~[ < 1 by 
GO 

P(l lm;~ ) =- ~ P.(lJm)~ n (8) 
n=O 

we find that 

P( t lm;~  ) - ~ e ( t -  l ' )P( l ' lm;~)  = St, ~ + ~ q ( l , l ' ) P ( l ' l m ; ~ )  (9) 
l '  l '  

The first term on the right-hand side arises from the initial condition (2). 
We now take a discrete Fourier transform, writing 

ff(~[m;~)-~ ~ eit~'P(llm;~) (10) 
/ =  - - o o  
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and defining the "structure function" 
oo 

x(~,)- ~ e"~'p(l) (11) 
1 =  - -  o,~ 

= l e-i4 + (1--1--) z (12) 

Equation (9) reduces to 

ei,,,~, (~/z)P(O[m; ~)(e i~" - e -i*) (13) 
fi(ff[m; 4) = 1 - ~h(9) + 1 - ~N(q~) 

and inverting the discrete Fourier transform we find that 

e ( t l m ;  0 = G(l[m; 0 + (Uz)e(Olm;OH(l;  0 (14) 

where 

1 ~ e iq~(m-l) dep (15) 
G(IIm;~) = ~ f ~  i ~-~(~) 

and 

1 ~" e-ilq'(eiq'- e-iq')ddP (16) 

/-/(/;0 = ~ f~ ~-  ~i~S 
Setting l = 0 in (14) yields an algebraic equation for P(O Ira; O, so that 

G(O I m; ~) 
P(01 m; ~) = 1 - (~/z)H(O; ~) (17) 

and the generating function for P.(l[m) is explicitly determined: 

G(O] m; ~)H(/; ~) 
P(llm; 0 = G(t[m;~) + (z/~) - H(0;~) (18) 

It is a trite exercise in residue calculus to determine G(I[ m; ~) and H(I; ~) 
in terms of elementary functions. With t+ (0, t (0  defined by 

z + [ z 2 - 4~ 2(z - 1) ]z/2 
t+_ (0  = 2,~(z - 1) (19) 

we find that 

f zt_ (0"- ' G(llm;~)= [ z2 - - ~ 2 ( - ~ _ i ) ] 1 / 2 ,  m~>l  

zt  + (~)m- 

-~-~2 ~ 4 ~ z  ~ ~) ]i-- ~ , m <~ [ 

(20) 
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and 

H(I; ~) = 

- z ( z  - 2)t_ (~) 

[z 2 -  4~2(z - i ) ]  1/2' 

z(t+)-z{t+-(t+) -t) 
[ z Z -  4~z(z - 1)] '/z 

/ = 0  

l > 1  

(21) 

Of particular importance in the ensuing analysis is the behavior of P(0[ m; 
0 near ~ = 1. A little algebra establishes that 

z I1 ') 1 G(0lrn ;~)= ( z - 2 ) ( z - 1 )  m z_---Z-~ + ~ ( 1 - ~ )  

+ 0 ( [1  - ~]2)} (22) 

and 

1 H(0 ;~)=  z - 1  1 -  z_---L~+ ~ ( 1 - ~ ) + O ( [ 1 - 5 ]  2) 

so that 

z__Z_~2 } (z _ 1)_ m [ m z ( z - 2 ) + 2 ( z - l ) ]  

+ o ( E  1 - ~]~1 

(23) 

(1 - ~) 

(24) 

3. R A N D O M  W A L K  S T A T I S T I C S  

Virtually all random walk statistics characterizing the long-time 
(n ~ ~ )  behavior of a P61ya walk on a Bethe lattice can be inferred from 
the generating function P(l]m;  ~) for site occupation probabilities, defined 
and evaluated in Section 2, and a closely related first passage time generat- 
ing function, which we now introduce. Let F~(m) denote the probability 
that a walker whose starting coordinate is m > 0 arrives at the origin for the 
first time on the nth step. We define 

oc 

F(m;~) = '~  Fn(m)~ n (25) 
n = l  



786 Hughes and Sahlmi 

and relate F(m; 0 to P(I[ m;O using the following argument. r Decom- 
pose all possible walks starting with coordinate m and terminating after n 
steps at the origin in terms of first visits to the origin. Then, clearly, 

n 

en(0[ m) = r + Z F j ( m ) P . - j ( O I O )  (26) 
j = l  

the j t h  term in the sum accounting for a walk in which the walker first 
reached the origin af ter j  steps. Multiplying (26) by ~" and summing gives 

e(o I m; ~) = 8m, o + F(m; ~)P(0 [ 0; ~) (27) 

so that 

F(m; ~) = { P(0[ m; ~) - 8,~,0 ) / e ( 0 1 0 ;  ~) (28) 

3.1. Probability of Reaching a Given Site 

We calculate the probability R(m) that a walker ever reaches a 
specified "target" site, m bonds removed from the starting site. In view of 
the topological equivalence of all sites, there is no loss of generality in 
selecting the target site as the origin of coordinates. We therefore need only 
calculate the probability R(m) that a walker with initial coordinate m ever 
arrives at the origin. Partitioning the probability of ever arriving over the 
possible arrival times, we have 

R(m) = ~ F,(m)= lim F(m; ~) (29) 
n = 1 ~'--)1 - 

We consider first the probability R(0) that the walker ever returns to 
the starting point. From Eqs. (28) and (29), setting m = 0, we find 

R(O) = 1 / ( z -  1) (30) 

In the degenerate case z = 2 (a linear chain) the walker is certain to return 
to the starting point (this result is well known(6-8)). For z/> 3 there is a 
finite probability of "escape" from the starting point (failure to ever return), 
i.e., the walk is transient. More generally, for m >/ 1, 

R(m) = (z - 1 ) - "  (31) 

a rapidly decaying function of m, so long as z >1 3. [For z = 2, R(m) = 1 for 
all m.] The result that R(0) = R(1), which follows from (30) and (31), can 
be derived from first principles: The walker's first step takes him to a 
nearest-neighbor of the starting point. The probability of return to the 
starting point is then exactly the probability that a walker ever visits a 
specified nearest neighbor of the starting point. An analog of this result 
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holds for a P61ya walk on any lattice for which all sites are topologically 
equivalent. 

3.2. Mean First Passage Times 

When z = 2 (a linear chain), all sites are certain to be visited, and the 
mean time (step number) for the first return to the origin, or the first visit to 
any other specified site (usually called the mean first passage time to the 
origin, or the specified site) is infinite. (9) For z >/3, the expected time that 
an observer at a given lattice site will have to wait before seeing the walker 
arrive for the first time is infinite, since there is a finite probability 
1 -  R(m) that the observer waits forever. In this sense, the mean first 
passage time is infinite. It has been noted by Lindenberg et al. (x~ that the 
conditional mean first passage time, i.e., the first passage time for those 
walks which do reach the specified site, is of some interest. This quantity is 
given by 

.rc(m ) = R(m) -1 ~ nF,(m) (32) 
n = l  

since F,(m) /R(m)  is the conditional probability that the walker first 
reaches a specified site m bonds removed from his starting point on the nth 
step, given that he does reach this site. Thus 

r~(m) = R ( m ) - t  ~-~ F(m; ~) ~=~- (33) 

2(z - 1) 

= ( z - 2 )  ' m = 0  (34) 

mz 
z - 2  ' m > 0  

The conditional mean first passage time to any site is finite when z/> 3, a 
result which we may interpret physically by saying that if a walk endures 
for more than a small number of steps, it is nearly certain that the walker 
will be far from the origin by this time, and so highly unlikely to return. 
The result that %(0) = 1 + To(1 ) can be derived from first principles [using 
the same argument as that outlined above to show that R(0) = R(1)]. We 
note that 

%(0)-->2 and %(m)--~m (m>~l )  (35) 

as z ~ oe, so that for a Bethe lattice with a very high coordination number, 
a walker following anything but the most direct path to a target site is 
unlikely to ever arrive there. 
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3.3. Expected Number of Distinct Sites Visited 

Montroll and Weiss (1~) have shown how the large n asymptotic form 
of S., the expected number of distinct sites visited in an n-step walk, can be 
determined for any P61ya walk on a Bravais lattice. Their analysis adapts 
quite readily to the Bethe lattice, and one can show that 

oo 

S(~) ---- ~ S ~ " =  (1 - ~)-2p(0[0;~)  -1 (36) 
n = 0  

Hence, using a Tauberian theorem, (11) we find that as n ~ oo, 

S.-n/P(O[O; 1)= { z ---W] - z  - 2 )n (37) 

provided that z >/3. The case z = 2 (a linear chain) has been analyzed by 
Montroll and Weiss (11) and other authors, (12) who show that 

S n ~ ( 8 n / ~ r )  1/2 (38) 

MontroU and Weiss (11) have also shown how the statistics for repeated 
occupancy of a given site can be analyzed. Using their techniques one can 
easily show that the expected number of distinct sites visited at least r times 
(S~ (~)) and the expected number of distinct sites visited exactly r times 
(V~ (~)) have the asymptotic forms 

s(r),.. , .~ ( Z  - -  2)n 
(39) 

( z -  1) 

(z - 2)2n 
V ('), (40) 

(z - 1) '+1 

for a Bethe lattice with z >~ 3. 

4. WALK ON A BETHE LATTICE IN A CENTRAL FIELD 

We have shown how Fourier transform and generating function tech- 
niques may be used to analyze random walks on a translationally invariant 
Bethe lattice, i.e., one for which all sites carry equivalent transition proba- 
bilities. If the transition probabilities vary from site t o  site, the problem 
becomes extremely difficult, and experience with Bravais lattices leads one 
to conclude that any general analysis is impossible. However, in special 
cases the problem can be solved, and we proceed to give one example. (The 
possibility of solving this particular problem was suggested to the authors 
by an elegant paper of Gillis, O3) who solved its one-dimensional analog. 
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Gillis' problem and the present problem are solvable for the same reason: a 
first-order ordinary differential equation for the Fourier transformed gener- 
ating function can be derived.) 

With coordinates defined as in earlier sections, we consider a walk 
starting m sites from the origin, with transition probability law 

where 

/ ' = 0  (~l,l" + l , 

(41) 

We recall that 

P(ll m; ~) = ~ f~ e-i~ [ rn; ~)dO (46) 

Irl < min(1/z ,  1 - 1 / z )  (42) 

If ~ > 0, we have an "attractive potential" (that is, a bias towards the 
origin), which decays with distance from the origin, while if ~ < 0, there is 
repulsion from the origin (i.e., bias away from the origin). As in Section 2 
we map the problem onto a biased one-dimensional random walk, with the 
defect at the origin now supplemented by an additional, site-dependent 
bias. We write 

~,(l , l ' )  = p ( 1 -  l ' )  + q ( l , l ' )  (43) 

where p ( l )  = (1 - 1/z)6t ,  1 + (1/z)St,_ I as before, and 

l ~  ! ~  z ' = 0  
Z" l,l - -  Z l , - - 1 ~  

q ( l , z ' ) =  _ ~ ~ z' t' (44) 
~7[ sgn(l')dt,r+ , + ~7[ sgn( )6,,t._ , , g=0 

where sgn(l') denotes the sign of l'. Introducing the generating function 
P(l[  m; ~) as in Section 2, we find in place of Eq. (13) the more complicated 
equation 

(Uz)P(OIm; ( ) ( e  i4" - e - i ~  e imd? 

~] sgn(/) e izq' (e  i* - e - i ~  
, = _ ~  IZl ~-_--~(-~ P(l] m;() (45) 

/ r  
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Substitution of this expression into the right-hand side of (45) and in- 
terchanging orders of integration and summation (an operation rigorously 
justifiable through the theory of generalized functions(14) ), we find an 
integral equation for 16(, I m; 0: 

eimeo (2i$/z)P(OI m; ~) 
- + s in ,  ff(*l m; ~) 1 - ~ ( , )  1 - ~h(ff) 

Since (~5) 

+ ~'[]-=~)]2x~sin* /~,~l~l_ s i n { l ( , -  0 ) ) l  fi(Olm;~)dO (47) 

o~ sin(nx) 
E _ l { ~r sgn(x) - x } (48) 
n=l n 2 

for --2~r < x < 2~r, and (d/d,)sgn(, - 0) = 28(,  - 0), multiplying (47) by 
[1 -  ~?~(,)]/sin, and differentiating with respect to , gives a first-order 
differential equation for / ; ( , [  m; 0, which can be written in the form 

( [ 1 - ' X ( * ) ]  2x, s in ,  )ff d/; + ~_4~1 n 
d--~ si~--~ i - :  ~-~(~) 

( d (eim,/sin,)) s in ,  (49) = -2x~P(01 m;~)+ ~ 1 --~h-(,) 

and solved using the integrating factor 

1 - ~X(r exp [ - 2 t ~ f : ~ s i n ,  1 sinvdv~_~_~(p) ] 

We find, after a little algebra, that 

e~m* Asin* [ 1 ff(~[m;~')-  1 ~h(,) + 1--~-~(~) exp 2K~f_?~ sinvdv 
- _ 1 -  

X(f; ' eimO [fO ] 1 --~X-(R) exp 2x~ ~ sinvdv dO 
,, 1 - i x ( p )  

-P(O[m;~) f:ffxPI2x~fo # lsi~n~(~)]dO ) 

2 x~ sin + 
_ 

( 5 0 )  

where A is a constant of integration. As we now show, two simultaneous 
linear equations relating A and P(0[ m; 0 can be derived. First, we inte- 
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grate (50) with respect to 4~ from -~r to ~r and use (46) to deduce that 

A (exp [ 2 x~f/~ 1 ~'in~(~ ) ] - 1 )  

e/m0 1 
= - 2 x ~ f - ~  1 - _  ~ ( 0 ) e x p  2x~f0 1 ---~'~-~)sinvdv dO 

+ 2~P(O[m;~)f / ,exp 2~f0  l=~-~(v) 

In the degenerate case of a linear chain [where z = 2 and X(v) -- cos v], the 
coefficient of A in (51) vanishes, and P(0[m;~) is determined uniquely 
without the need to find A : 

fa,r(eimO/1 -- ~2t(0))exp[2x~ f'~(sinv dv/1 - ~)t(v))] dO 

P(0[ m; ~) = fL,~exp[2x~f'~(sinvdv/1 - ~)t(v))] dO 

(52) 

The integrals in (52) can be expressed in terms of the hypergeometric 
function and the gamma function: 

~mF(rn + 1 + 2~)2F](rn/2 + 1/2 + x ,m/2 + lx ;m + 1;~ 2) 
P(01 m; ~) -- 

2mm! I'(1 + 2x)2FI(x + 1/2, x; 1;~ 2) 

(53) 
When m = 0, we recover the result of Gillis. (13) [For the case z = 2, the fact 
that the origin is a reflecting barrier does not affect the calculation of 
P(0Im;  4). Using properties of the gamma and hypergeometric functions, 
one can show that (53) is invariant under the replacement of m by - m . ]  

When z > 3, it is necessary to return to the integral equation to obtain 
a second relation between A and P(01 m; 4). The resulting algebra can be 
reduced somewhat by noting that if (50) is subtracted from (47), cancella- 
tion of the common factor sinq~/[1- ~(q))] and evaluation at 4 ) = - T r  
yields the equation 

(2i~/z)P(Olm;~) + ~ f _f (Olm; )ao= A (54) 

Substitution of the solution of the differential equation [given by (50)] into 
(54) yields the required linear relation between A and P(0[ m; ~). Although 
the solution is now completely determined, the resulting expressions are 
rather cumbersome, and we do not exhibit them here. 
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5. THE SUBJECTIVE DIMENSION OF A BETHE LATTICE 

W e  have  shown in the present  pape r  that  m a n y  of the proper t ies  of 
r a n d o m  walks are as easily deduced  for the Bethe la t t ice  as for Bravais  
lattices. Our  abi l i ty  to solve these p rob lems  stems f rom the observa t ion  that  
a r a n d o m  walk on  a Bethe lat t ice can  be  m a p p e d  on to  a biased,  one-  

Table h Random Walk Statistics for Various Lattices ~ 

Lattice R(O) rc(O) S n (n >> 1) 

One-dimensional biased b 2 
-y(l, l ') = (1 - 1//z)~l,/,+ 1 "{- (1/z)8t, r -  1 z 

2(z - l) (z - 2) 
- - / , /  

(z - 2) z 

Bethe lattice ~ with coordination 
number z 

d = l  

1 2 ( z -  1) ( z - 2 )  
z - 1 (z - 2) ~ n 

1 o~ / ~ ) ' / 2  

qzn  1 oo 
In n 

1 -- 141(3)- 1 ~ n~ W(3) 
1 - W(4)-  l oo n~ W(4) 

1 - W ( d ) -  1 finite n~ W ( d )  
1 

~ 2  ~ n  
2d 

Cubic lattice d of 

dimension d 

aNotation: 

d = 2  

d = M  
d = 4  

d > 4  

d>>4 

R (0) = probability of return to the starting point 

zc(0 ) = mean time to return to the starting point, given that return occurs 

S,, = mean number of distinct sites visited in a walk of n steps 

w(d)= 1 ('~ do, . , ,  ffJod[1-(cosO~ + - - .  +cos0~)] -~ 
(2~r) d J -  ~ 

= 1 + 1 + O(d( -2 ) ,  d ~ c ~  
z a  

bEasily calculated using generating function techniques (Ref. 7) or more elementary means 
(Ref. 9). 
c Results of the present paper. 
dR(O) from Pdyla (Ref. 8) and Montroll (Ref. 6); zc(0) from Liudenberg et al. (Ref. 10); S n 
from Montroll and Weiss (Ref. 11). 
eThe exact value can be expressed in terms of gamma functions 

~ 6  F(  1 5 7 11 
288~r 3 \ - ~  I F (  ~-~ I F (  - ~  ) F (  ~-~ ) ~ 0.34. W(3) 

[M. L. Glasser, personal communication 1982, based on a corrected version of Glasser and 
Zueker (Ref. 16).] 
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dimensional lattice walk with a single defect, at the cost of losing all 
information about lattice sites, other than their distance from a single, 
specified site (the origin of coordinates). In view of this mapping, one may 
choose to regard the Bethe lattice as a kind of biased, one-dimensional 
system, and the Bethe lattice is certainly one-dimensional in the sense that 
any two sites are connected by a unique linear chain. However, the opinion 
has often been advanced that the Bethe lattice is essentially an infinite 
dimensional system. This opinion, together with the observation that many 
statistical or cooperative phenomena are qualitatively independent of di- 
mension above a certain critical dimension, has led to the use of the Bethe 
lattice as a simple analytic probe of the properties of Bravais lattices of 
sufficiently large dimensionality. 

It is interesting to see what light random walk statistics can shed upon 
the "dimensionality" of the Bethe lattice. We give in Table I a variety of 
random walk statistics for Pdlya's walk on cubic lattices of arbitrary 
dimension d, P61ya's walk on a Bethe lattice of coordination number z, and 
a biased one-dimensional walk with transition probability 

= (1- !z +z ' " - '  

(i.e., one which is formally identical to P61ya's walk on a Bethe lattice of 
coordination number z, except for the omission of the defect at l '  = 0). It 
can be seen from Table I that the P61ya walk on a Bethe lattice does have 
some qualitative similarities to a P61ya walk on a cubic lattice of dimension 
d > 4. However, the correspondence between the Bethe lattice and a biased 
linear chain is just as good. In any event, even if one agrees that for the 
random walk problems considered here, a Bethe lattice is equivalent to a 
simple cubic lattice of dimension greater than 4, it is most certainly 
inappropriate to say that a Bethe lattice of finite coordination number z is 
equivalent to an infinite-dimensional cubic lattice, since the latter gives 
R(0) -- 0, while the former gives R(0) > 0. The authors suggest that great 
caution should be exercised in assigning any "dimension" to a Bethe lattice 
of coordination number z, and in carrying over Bethe lattice results to 
Bravais lattices. 
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NOTE ADDED IN PROOF 

It has recently been noted by P. W. Kasteleyn (preprint, 1982) that 
P61ya's walk on a Bethe lattice with even coordination number z is 
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equivalent to a random walk on a group considered by H. Kesten [Trans. 
Amer. Math. Soc. 92:336 (1959)]. Using Kesten's solution, Kasteleyn de- 
duces several random walk statistics. His results for even z agree with the 
formulae derived in Section 3 for all integers z > 2. 
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